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Using a representation of the solution to the diffusion equation in a randomly inhomogeneous medium in the form of a Feynman 
path integral an explicit expression is obtained for the effective conductivity in a space of arbitrary dimension. A calculation of 
the path integral only turns out to be possible in the case of a large-scale limit. In particular, it is shown that in the three-dimensional 
case the expression for the effective conductivity does not admit of an expansion in terms of the conductivity variance. This indicates 
that the use of standard perturbation theory in the form of an expansion in terms of the conductivity fluctuations is incorrect. 
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1. INTRODUCTION 

When analysing various phenomena of the transport of some quantity (charge, heart, material or 
momentum) it is usually assumed that the relation between the flows of the corresponding quantities 
and the gradients of some other quantities (potential, temperature, concentration or velocity) is linear, 
while in a randomly inhomogeneous medium the constant of proportionality (referred to as the transport 
coefficient) is a random function of the coordinates. In practice, it is important to know the relation 
between the averaged flows and the gradients. The relevant constant of proportionality is termed the 
effective permeability. Though our analysis concerns many different phenomena, to be more specific 
we shall examine the process of seepage flow in porous media. 

The description of seepage processes in an isotropic medium is based on Darcy’s law, which relates 
the seepage flow rate v(r) and the pressure gradientp(r) 

v(r) = -x(r)Vp(r) (1.1) 

where x(r) is the conductivity of the medium, which is a given function of the coordinate r. In general, 
the relation between the mean values of the seepage flow rate and the pressure gradient is non-local 
and has the form 

(v(r)) = -j x,ff (r, rWp(r’))dr (1.2) 

For a statistically homogeneous medium the integral kernel x,ff (r, r’) depends only on the difference 
of the coordinates r - r’. When the inhomogeneity dimensions are small compared with the characteristic 
scales of the seepage flow (the large-scale limit), we may assume 

%.ff (r - r’) = x,&r - r’), xeff = j xeff (r)dr (1.3) 

and the problem consists of finding the effective conductivity xeff for given statistics of the forms of 
conductivity x(r). It is also worth noting that, according to the convolution theorem, in the space of 
Fourier-transforms relation (1.2) takes the form 

(v(q)) = -iw,ffbd < dq)) 

and relation (1.3) will correspond to 

%ff = ~effwlq = 0 (1.4) 

A calculation of the effective conductivity in a randomly inhomogeneous medium has been the subject 
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of many papers. The main difficulty is that, in order to find the average pressure and flow rates, one 
has to start by solving the following stochastic differential equation, which follows from the condition 
that the liquid is incompressible 

V.(x(r)Vp(r))=O 

for given boundary conditions (usually deterministic), and the next step is to average the solution 
obtained over the ensemble of different conductivities x(r). Since, in general case, the solution of a 
differential equation with variable coefficients cannot be written in explicit form, it seems best to use 
an approach based on perturbation theory. To do this one must split x(r) into an averaged part, which 
is independent of coordinates in the statistically homogeneous medium, and fluctuations 

x(r) =(x) + &c(r) 

and search for a solution in the form of a perturbation theory series in powers of the fluctuations 
&(r)/(x). Then term-by-term averaging of the series obtained for known statistics of the fluctuations 
6x enables one to find the mean values of the flow rates and pressures and thus calculate xCff A detailed 
description of the approach based on the use of a low-order perturbation theory approximation is given 
in the monograph [l]; most of the papers devoted to this problem use this approach. 

However, the question of to what extent the effective conductivity is well described by the low-order approximation 
remains unanswered. In the context of estimating the role of high-order approximations the suggestion was made 
that the dependence of the effective conductivity on the conductivity variance has an exponential form and that 
the lowest-order approximation is the first term of the Taylor series expansion of the exponential function [2]. To 
check this hypothesis, the high-order perturbational corrections were estimated. In particular, the result obtained 
in the second-order approximation (quadratic in the conductivity variance) turned out to be in agreement with 
the hypothesis that the effective conductivity depends exponentially on the variance [3]. Unlike the “primitive” 
perturbation theory used in [l, 41 it was suggested that the perturbation theory series should be constructed by 
proceeding from the differential equation to the integral one and then solving that by an iterative method [5-71. 
In this approach it turned out to be very useful to employ quantum field theory methods based on the use of Feynman 
diagrams, Dysons’ equations and the renormalization technique for improving perturbation theory by summing 
some infinite subsequence of the total perturbation series [5]. The results for high-order approximations obtained 
within the scope of the improved perturbation theory turned out to contradict the hypothesis of an exponential 
dependence of the conductivity on the variance as well as the assumption that the effective conductivity is 
independent of the form of the correlation function of the conductivity fluctuations [4]. 

It is of interest to calculate the effective conductivity without using perturbation theory. A similar 
approach was suggested by us in the problem of the turbulent diffusion of a passive impurity [8]. 
The approach is based on representing the solution of the stochastic differential equation in the 
form of a Feynman path integral and does not use the assumption that the conductivity fluctuations 
are small [lo]. 

2. STATEMENT OF THE PROBLEM 

In order to set up the boundary-value problem we will consider an unbounded medium with a given 
regular source rather than the generally used method when the boundary pressure is given [l]. Then 
the equations for the flow rate and pressure take the form 

VW = p(r) 

Vx(r) . VP(r)‘= -p(r) 

(2.1) 

(74 

Here p(r) is the liquid source density. We will assume (and this will be confirmed below) that the result 
for the conductivity, which specifies the properties of the medium, must be independent of the geometry 
of the flows produced by them. 

The solution of Eq. (2.1) for the potential part of the flow is 

(v(r)) = VA--‘p(r) 
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where A-’ ’ 
obtain 

1s Green’s function for the Laplace operator. Taking Fourier transforms and averaging we 

(v(q)) = -i4PWq2 

As a result, for the Fourier transform of the effective conductivity we find 

&&I) = 4* (P(9)) / P(q) (2.3) 

and the problem reduces to calculating the Fourier transform of the pressure averaged over the ensemble 
of conductivities. 

In what follows, it turns out to be more convenient to introduce the notation x(r) = x&‘). The 
equation for pressure then takes the form 

[V* + Vu(r).V]p(r) = -x;‘e-“(‘j.W (2.4) 

It should be noted that when constructing the perturbation series for the pressure, the exponential 
factor on the right-hand side of Eq. (2.4) 
[5-71. 

was ignored in papers based on the use of an external source 

The formal solution of Eq. (2.4) may be determined by the relation 

p = ~0’ (-V* - Vu. V)-’ e-“p (2.5) 

where the inverse operator in (2.5) is Green’s function for an equation with variable random coefficients. 

3. THE STOCHASTIC SOLUTION FOR THE PRESSURE 

Following the approach described previously [8,9] the Feynman operator formalism [lo] will be used 
to construct the inverse operator. According to that formalism the inverse operator may be expressed 
in the form of the ordered operator exponential function 

[-V* -Vu(r).V]-’ =T exp -i [-V*(s)-VVu(r,s).V(s)]ds dz 
0 0 

(3.1) 

Here the exponential function of operator should be understood as a Taylor series expansion in powers 
of the operators V(s) and V u(r, s) provided the requirement that non-commuting operators V(s) and 
V u(r, s) act in order of increasing “proper time” s. This ordering rule enables one to manipulate 
operators as numbers. To “disentangle the operator exponential function the order” of the operator V 
in the exponent of the exponential should be reduced to the first power. Then the exponential function 
obtained, which contains the operator V to the first power, can be interpreted as the shift operator of 
the argument according to the relation 

eb’vf(r) = f(r + b) (3.2) 

The reduction of the order of the operator V may be achieved by using a transformation proposed 
by Stratonovich [l 11. This transformation must be regarded as the functional analogue of the Weierstrass 
transformation [12] (see also [9, Appendix A]) 

Here X(s) are all possible vector functions, specified on the interval (0, T). The integral measure d[X(s)] 
is normalized in such a way that 

lexp{-$d } X*(s)ds d[X(s)] = I 
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Performing Stratonovich’s transformation and using relation (3.2) we obtain 

p(r) = ~0’ 7 J p(m z I x)) x 
0 

xexp -ii [X(s)+Vu(r(s,rlX))Pds-u(r(O.rlX)~~~X(s)lm 
{ 

r(s, 7 1 X) = r - j X(s’)ds’ 
S 

(3.4) 

To perform subsequent averaging over samples of u(r) = ln[x(r)/%], it is convenient to eliminate the 
squared Vu in the exponent of the exponential function by a second application of Stratonovich’s 
transformation. As a result we obtain the following for the average value of the pressure 

(p(r))=$y Jp(r(O,~lX))x 
0 

xexp 
{ 

-i [Y*(s)+iY(s).x(s)lds 
I 
Y[8(x I Y)ld[X(s)ldW(s)ldr 

~LB(xI~~l=Glp(ijB(‘IY)u(l)dxl) 

0(x 1 Y) = i [Y(s).V +2iI!(s)Nx-r(s,z I X))ds 
0 

(35) 

The quantity U[0(x ]Y)] is the characteristic functional for the conductivity logarithm (the functional 
Fourier-transform of the distribution function for u(r)), which in the case of a centred log-normal 
conductivity distribution has the form 

Y[~(x 1 Y)] = exp 
1 

-+ Je(x I Y)CWl Y)B(x,x’)dxdx’} (3.6) 

where B(x - x’) = (u(x)u(x’)) is the binary correlation function of the conductivity logarithm. By a 
suitable choice of x0 one may always satisfy the condition (u) = 0. 

After integrating over x, x’ in (3.6) the dependence on r remains only as an independent variable of 
the source density. Performing a Fourier transformation with respect to r and using (2.3) we find 

&q)=x;rq2~ Jexp -i [Y2(s)++N(s).X(s)+iq.X(s)lds x 
0 i 0 

~~~~l~)d~~~~~ki~~~~~l~~ (3.7) 

E(I: 1 Y) = exp 
1 

-+[ [ [-Y(s)V + 2iS(s)][Y(s’)V + 2iW)l X 

xB(r(O,s I X)- r(O,s’I X))dsds’ 
I 

To find xeff, we take the limit as q 4 0. However, this operation is not simple because the dependence 
of the integrals on the right-hand side of relation (3.7) on q proves to be singular at the point q = 0. 
To make this operation well posed, we perform an inverse Fourier transformation and we then 
obtain 

x;;(r) = -x,‘V2F(r) (3.8) 

F(r) = j j6(r(O,z 1 X))exp -i [Y2(s)+iY(s).X(s)lds X 
0 0 

xE(zlY)d[X(s)ld[Y(s)l~ 
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According to (3.4) and (3.8) the integration over X(s) may be regarded as an integration over the 
velocities of all possible paths emerging from the origin of coordinates at the time s = 0 and ending at 
the point r at the time s = T. 

4. THE EFFECTIVE CONDUCTIVITY IN THE LARGE-SCALE LIMIT 

Using relations (1.3) and (3.8) and transforming the volume integral into a surface integral we obtain 

(4.1) 

(S, = 2#?l?(d/2) is the surface area of the d-dimensional sphere of unit radius). 
When inte rating over trajectories X(s), the contribution of any trajectory depends exponentially on 

the quantity B ‘0 X*(s)dr, which can be interpreted as a twice the action along the trajectory of a moving 
free particle. According to relation (4.1) only trajectories departing to infinity are considered, hence 
the action along these trajectories will be large, and the most essential contribution to the path integral 
results from trajectories with minimum action, e.g. with constant velocity X(s) = X, = const. 

iX*(s)ds 

With the exception of the assumption of the log-normal form of the conductivity distribution, our 
analysis has so far been exact. As the first (and unique) approximation we assume that in Eq. (3.8) it 
is possible to put B(r(s, T ] X) - r(s’, T ] X)) = B(XO(s - s’)). 

In this approximation and using the identity 

VB(X,(s - s’)) =$;B(X&-s’))= 
0 

-$-$B(X,(s-s’)) 
0 

one can integrate over s and s’ in Eq: (3.8). Integration over trajectories is also possible in explicit form 
using a Fourier transform [13]. In order to do this, we perform a Fourier series expansion of the functions 
X(s) and Y(s), given in the interval 0 G s c T; 

X(s)= x0 + i x, co+ 
II=1 

Y(s) = yo + c yfi coy 
n=l 

(4.2) 

Using these expansions (which in the case of the path integral corresponds to a simple change of the 
variable of integration), the integration over trajectories reduces to the product of an infinite number 
of integrals over X,, and Y,,. Integrating over X,, if n f 0, gives 6(Y,J, and taking into account the 
normalization condition the subsequent integration over Y, gives a factor equal to unity. After 
substituting Y. + Y. - iXd2 the remaining integration over d-dimensional vector Y. is performed using 
the relation 

J p{ ex _y*r-iy [B(O)-B(Xr)l)dY=(q)d’*[l+ B(O)$Xr)l+ 

The subsequent integration over X, is carried out using the delta-function in the integrand of (3.8). 

5. DISCUSSION OF THE RESULTS 

After performing the actions indicated in Section 4 and using the relation X, = r/r we obtain 

dr 
m= 

l+[B(O)-B(r)]r*/z ‘5 

(5.1) 
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O” 
A,(r)= 1 

t(d-3)‘2 exp{-t / 4} dt 

a [f + E(0) - B(,)J”‘2 

According to the principle of damping of the correlations we assume that the correlation B(r) + 0 and 
aB(r)/& tends to zero more rapidly then l/r as r + m. As the result we find 

I 

(5.2) 

Notice that if we put B(0) = 0 in the integrand of (5.2) the integral in (5.2) will be equal to 
(4)d’2-‘I(d/2 - l), and this leads to the relation X& = x0’ exp{B(0)/2] = (x-i}. In the one-dimensional 
case this result is exact, whereas a direct application of relation (5.2) leads to a singular integral because 
in the one-dimensional case the use of the Fourier transform proves to be incorrect, as is well-known 
when solving the Laplace equation by means of the integral transform method. For d = 2, formal 
use of relation (3.2) gives xeff = 0. This result is related to the classical problem of finding Green’s 
function for the d-dimensional Laplace equation when the solution has the form I’(&2 - l)r(“-*), and 
as d + 2, it turns out to be expressed in the form I(0) + 2 In r, which contains an infinite constant and 
a finite term proportional to In r 

One can also see from formulae (5.2) that the right-hand side of (5.2) does not allow of a series 
expansion in terms of the variance B(0) because, beginning from some order, the expansion coefficients 
contain divergent integrals. This enables us to assert that when constructing the statistical solution of 
a stochastic differential equation of the form (2.2), the use of the perturbation technique is incorrect. 
In other words, the perturbation proves to be singular, and even under very small perturbations the 
structure of the solution is not close to the structure of the solution of the unperturbed problem. It 
seems likely that the singular nature of the perturbation is associated with a violation of the symmetry 
group corresponding to the scale transformation of the coordinates. This symmetry exists for Eq. (2.2) 
if x = COIZSI, and does not exist if the conductivity depends on the coordinate. 

The above is clearly illustrated in the three-dimensional case where the problem of divergent integrals 
does not arise and the result of the calculation may be presented in explicit form. In the general case, 
the integral in (5.2) is expressed in terms of the Whittaker function W <I/J+ 1~~1/4_1/2(B(O)/4) which, when 
d = 3, reduces to the error integral. The appropriate calculation yields 

(x) 
Xeff = (l+D)[l -erf(@@/2)] 

and the series expansion in terms of the variance of the conductivity fluctuations is carried out in half- 
integer powers of B(O), whereas from the procedure for constructing the perturbation series it follows 
that we have to obtain an expansion in integer powers of B(0). However, the question of to what extent 
the conclusion on the non-applicability of perturbation theory is connected with the use of the log-normal 
statistics for the conductivity fluctuations remains open. 
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